meerqat.models.rr module#
- class meerqat.models.rr.BertReRanker(config)[source]#
Bases:
BertPreTrainedModel
As described in [1].
Almost like BertForSequenceClassification without dropout, and pooling from [CLS] token.
References
- forward(*args, **kwargs)[source]#
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class meerqat.models.rr.ECAReRanker(config, **kwargs)[source]#
Bases:
ECAEncoder
Like BertReRanker with a ECA backbone instead of BERT
- forward(*args, return_dict=True, **kwargs)[source]#
- Parameters:
text_inputs (dict[str, torch.LongTensor]) – usual BERT inputs, see transformers.BertModel
face_inputs (dict[str, torch.FloatTensor]) –
- {
“face”: (batch_size, n_images, n_faces, face_dim), “bbox”: (batch_size, n_images, n_faces, bbox_dim), “attention_mask”: (batch_size, n_images, n_faces)
}
image_inputs (dict[str, dict[str, torch.FloatTensor]]) –
- {
model: {
”input”: (batch_size, n_images, image_dim) “attention_mask”: (batch_size, n_images)
}
}
- class meerqat.models.rr.FlamantReRanker(config, **kwargs)[source]#
Bases:
FlamantModel
Like BertReRanker with a Flamant backbone instead of BERT
- forward(*args, return_dict=True, **kwargs)[source]#
- Parameters:
text_inputs (dict[str, torch.LongTensor]) – usual BERT inputs, see transformers.BertModel
face_inputs (dict[str, torch.FloatTensor]) –
- {
“face”: (batch_size, n_images, n_faces, face_dim), “bbox”: (batch_size, n_images, n_faces, bbox_dim), “attention_mask”: (batch_size, n_images, n_faces)
}
image_inputs (dict[str, dict[str, torch.FloatTensor]]) –
- {
model: {
”input”: (batch_size, n_images, image_dim) “attention_mask”: (batch_size, n_images)
}
}