meerqat.image.embedding module#
Usage: embedding.py <dataset> [<config> –disable_caching –output=<path>]
Options: –disable_caching Disables Dataset caching (useless when using save_to_disk), see datasets.set_caching_enabled() –output=<path> Optionally save the resulting dataset there instead of overwriting the input dataset.
- class meerqat.image.embedding.ImageEncoder(encoder, pool)[source]#
Bases:
Module
Simply encode and pool the features
- forward(x)[source]#
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- meerqat.image.embedding.from_pretrained(model_name='resnet50', imagenet=True, pretrained_model_path=None, **kwargs)[source]#
Notes
For models trained on other dataset than imagenet, don’t forget to pass the right num_classes in kwargs
Examples
To load from a Places365 checkpoint, first process the state_dict as this: >>> checkpoint = torch.load(“resnet50_places365.pth.tar”, map_location=”cpu”) >>> state_dict = {str.replace(k,’module.’,’’): v for k,v in checkpoint[‘state_dict’].items()} >>> torch.save(state_dict, “resnet50_places365_state_dict.pth”)
- meerqat.image.embedding.get_encoder(torchvision_model)[source]#
Keep only convolutional layers (i.e. remove final pooling and classification layers)
- meerqat.image.embedding.get_torchvision_model(pretrained_kwargs={}, pool_kwargs={})[source]#
Get model pre-trained on ImageNet or Places365
- meerqat.image.embedding.get_transform(resize_kwargs={'size': 224}, crop_size=224, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])[source]#